

2003 Marking Scheme

Grade Awarded	Mark Required (/100)	% candidates achieving grade
A	76+	%
В	62+	%
С	49+	%
D	?	%
No award	?	%

	2003 Higher Chemistry Marking Scheme			
MC Qu	Answer	% Pupils Correct	Reasoning	
1	С	81	 A Argon is monatomic and does not conduct in any state. B Potassium has metallic bonding and conducts when solid and liquid C Potassium fluoride is ionic. Conducts as a liquid but not as a solid tetrachloromethane is covalent and does not conduct in any state. 	
2	D	64	 ▲ HCl(g) → H⁺(aq) + Cl⁻(aq) ▲ B SO₂(g) + H₂O(l) = 2H⁺(aq) + SO₃²⁻(aq) ▲ C NH₃(g) + H₂O(l) = NH₄⁺(aq) + OH⁻(aq) ▲ D CH₄ is non-polar covalent and does not dissolve in a polar solvent like water. 	
3	В	52	 A Adding ions will speed up corrosion (ions complete the circuit better) B glucose is covalent so does not help complete the circuit like an ionic compound would C iron nail will sacrificially corrode faster to protect copper wire attached C O2 dissolves in water to form carbonic acid. H⁺ reacts with iron (and more ions complete the circuit better) 	
4	С	31	$\frac{N_2 \text{ molecule } 1}{1^4 N} = \frac{N_2 \text{ molecule } 2}{1^4 N} = \frac{N_2 \text{ molecule } 3}{1^5 N} = \frac{15}{1^5 N}$	
5	D	57	Formula of sodium sulphate = Na2SO4 → 0.2mol of sulphate ions ∴ 0.4mol Na⁺ ions Formula of sodium chloride = NaCl → 0.6mol chloride ∴ 0.6mol Na⁺ ions Total no. of mol Na⁺ ions = 0.4mol + 0.6mol = 1.0mol	
6	В	41	 ▲ Acid in excess → increased concentration of acid would produce same volume of gas more quickly ▲ B Increasing mass of CuCO₃ → more gas produced → More loss of mass → Line shifts from P to Q ▲ C Decreasing particle size → stepper initial line but same mass loss at end of reaction ▲ D Adding a catalyst would not change the mass loss from the flask (just the initial steepness) 	
7	C	69	1mol butanal = 72g (in question) 3.6g butanal ↔ -134kJ (-ve sign as heat is released) 1mol = 72g butanal ↔ -134kJ x ⁷² / _{3.6} = -2680kJ mol ⁻¹	
8	В	58	 X ΔEneg. = 3.0 - 1.0 = 2.0 B ΔEneg. = 3.0 - 0.8 = 2.2 (Most ionic character has biggest electronegativity difference) C ΔEneg. = 3.0 - 1.5 = 1.5 Δ ΔEneg. = 3.0 - 1.0 = 2.0 	
9	С	66	 A reactant molecule is diatomic and is not a gas B reactant molecule is diatomic and bond must be broken first C 1st ionisation energy: Gaseous free atoms with 1 electron removed per atom D Positive ions are formed by 1st ionisation energy 	
10	D	59	 ☑A Boron is covalent network (mpt = 2075°C) ☑B Carbon (diamond) is covalent network (sublimes at = 3825°C) ☑C Silicon is covalent network (mpt = 1414°C) ☑D sulphur comes in S₈ discrete molecules (mpt=115°C) 	
11	D	55	 ▲ BaCl₂ is ionic ∴ not soluble in non-polar CCl₄ ▲ B CsCl is ionic ∴ not soluble in non-polar CCl₄ ▲ C CaCl₂ is ionic ∴ not soluble in non-polar CCl₄ ▲ D PCl₃ is covalent ∴ most likely to be soluble in non-polar CCl₄ 	
12	A	63	\blacksquare A CH ₃ COOH has -OH bonds to form hydrogen bonds between molecules \blacksquare B CH ₃ CH ₂ OCOCH ₃ has no -OH bonds (or N-H or H-F bonds) to form hydrogen bonds \blacksquare C C ₆ H ₁₄ has no N, O or F attached to H to from hydrogen bonds \blacksquare D C ₆ H ₁₂ has no N, O or F attached to H to from hydrogen bonds	

			A Not metallic as bpt is-33°C and metals do not dissolve in water
13	R	41	B polar covalent compounds dissolve in water (NH ₃ has bpt of -33°C and forms an alkaline solution)
		• •	E BPT too low to be lonic bonding (lonic compounds have higher mpt and bpt)
	~	FO	Tonic formula of calcium phosphate = $(Ca^{2+})_3(POA^{3-})_2$
14	D	58	1mol calcium phosphate = 5 mol of ions (3mol of Ca^{2+} ions and 2 mols of $PQ_{4^{3-}}$ ions)
			\blacksquare A 1mol C atoms =12g \rightarrow 2mol of C present \rightarrow 2L (2xAvogadro's Constant)
15	C	57	■ B 1mol O ₂ molecules = 32g → $\frac{1}{2}$ mol of O ₂ present → $\frac{1}{2}$ L ($\frac{1}{2}$ ×Avogadro's constant)
15	C	57	$\square C$ 1mol H ₂ molecules = 2g \rightarrow 1mol of H ₂ present \rightarrow 1L (1×Avogadro's constant)
			EXID 11 the of 1 mol Γ^{-1} = 1 mol of NaCl solution \rightarrow 2 mol ions present \rightarrow 2L
1/	~	72	$\begin{array}{cccc} C4H10(g) + 0_{\overline{2}}O_2(g) \rightarrow 4CO_2(g) + 5H2O(l) \\ 1mol & 6.5mol & 4mol & 5mol \end{array}$
16	C	12	Ivol 6.5vol 4vol - (liquids have negligible volume compared to gases)
			1litre 6.5 litres
			A reforming turns straight chains into branched and ring/aromatic hydrocarbons
17	A	80	Steam reforming of coal produces synthesis as (carbon monoxide + hydrogen)
			ED catalytic cracking of heavy oil fractions can produce petrol and unsaturated compounds for plastics
			\blacksquare A RAM=44 \rightarrow 3C + 8H = 36+8=44 \rightarrow C ₃ H ₈ \therefore propane (alkane)
18	C	65	■ RAM=72 \rightarrow 5C + 12H = 60+12=72 \rightarrow C ₅ H ₁₂ \therefore pentane (alkane)
10	C	05	$\square C RAM=84 \rightarrow 6C + 12H = /2+12=84 \rightarrow C_6H_{12} \therefore \text{ hexene (alkene)}$
			\square A 112-trichloroethene has no isomer (always rearranged back to same C ₂ HCl ₃ molecule)
10	٨	20	EB 1,1-dichloroethane CH ₃ CHCl ₂ and 1,2-dichloroethane CH ₂ ClCH ₂ Cl are isomers
19	A	30	\mathbf{E} C Propene C ₃ H ₆ and cyclopropane C ₃ H ₆ are isomers
			D propan-1-ol CH ₃ CH ₂ CH ₂ OH and propan-2-ol CH ₃ CH(OH)CH ₃ are isomers
	~	0	A Primary alcohol: I carbon airectly attached to the carbon with the -OH group
20	В	85	Sc Secondary alcohol: 2 carbons directly attached to the carbon with the -OH group
			ED Secondary alcohol: 2 carbons directly attached to the carbon with the -OH group
21	•	71	4-methylpentan-2-ol is secondary alcohol → oxidises to ketone 4-methylpentanone
21	A	/4	4-methylpentan-2-ol → CH ₃ CH(CH ₃)CH ₂ CH(OH)CH ₃ → C ₆ H ₁₄ O → 102g mol ⁻¹ 4-methylpentanone → CH ₂ CH(CH ₂)CH ₂ COCH ₂ → C ₆ H ₁₄ O → 100g mol ⁻¹
			propanal \rightarrow propana + water
22	С	63	$CH_3CH_2CH_2OH \rightarrow CH_3CH=CH_2 + H_2O$ (dehydration reaction)
			$\mathbf{E}\mathbf{A}$ oxides of carbon: CO (poisonous) and CO ₂ (greenhouse gas) have no effect on the ozone layer
23		97	B hydrocarbons do not react with ozone e.g. remnants of benzene are carcinogenic
23	υ	07	SC 502 is an acid rain gas
			∠D Chlorofluorocarbons (CFCs) breakdown ozone (O₃)
24	D	83	Polyester fibres are linear, cured polyester resins are cross-linked
25	Α	50	Amine groups (-NH2) are most similar to ammonia NH3
_	• •		X A Fate & oile have no cross links between choins
		10	B hydrolysis of fats & oils produces alveerol and 3 fatty acids
26	D	69	EC carbon chain lengths do not chain in hardening of oils into fats
			\square D Hardening of oils to fats involves hydrogenation (addition of H ₂ across C=C bonds)
27	^	52	In fats & oils, fatty acids usually react with -OH groups in glycerol
61	し	JC	Sucrose has 8x -OH groups which fatty acids can react with.

28	A	91	Denaturing proteins always involves in changing the shape of the protein
29	В	70	図A Has to be purified from crude oil, etc 図B Natural gas is mainly methane 図C Has to be made by molten electrolysis of Al ₂ O ₃ 図D Made in a blast furnace by reacting Fe ₂ O ₃ with carbon
30	A	79	Equation Θ : $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ $\Delta H = q$ Equation Θ : $S + O_2 \rightarrow SO_2$ $\Delta H = r$ Equation $\Theta \times -1$: $H_2O + SO_2 \rightarrow H_2S + 1\frac{1}{2}O_2$ $\Delta H = -s$ Equation $\Theta = \Theta + \Theta + \Theta'$: $S + H_2 \rightarrow H_2S$ $\Delta H = p = q + r - s$
31	D	83	 A rate of forward reaction and rate of reverse reaction increase equally B rate of forward reaction and rate of reverse reaction increase equally C Equilibrium position in unchanged but is reached more quickly D Equilibrium position in unchanged
32	В	68	ICl ₃ solid is a product for more products to be formed more forward reaction is required. Forward reaction is exothermic so <u>decreasing temperature</u> will favour the forward reaction Forward reaction lowers pressure so <u>increasing pressure</u> will favour forward reaction
33	A	75	Ethanoic acid is a weak acid (only partially dissociates) 0.1mol l ⁻¹ is classified as a dilute solution.
34	D	94	$[OH^{-}] = 1 \times 10^{-2} \text{ mol } I^{-1}$ $[H^{+}] \times [OH^{-}] = 10^{-14} \therefore [H^{+}] = 10^{-14} \div [OH^{-}] = 10^{-14} \div 10^{-2} = 1 \times 10^{-12} \text{mol } I^{-1}$
35	В	60	■ A ethanoic acid: pH<7 → dilution will raise pH to 7 ■ B sodium chloride: pH still 7 and dilution will decrease conductivity as there is less ions ■ C sodium hydroxide: pH>7 → dilution will lower pH to 7 ■ D nitric acid: pH<7 → dilution will raise pH to 7
36	D	53	Equation 0×5 : $10I^- \rightarrow 5I_2 + 10e^-$ Equation 0×2 : $2MnO_4^- + 16H^+ + 10e^- \rightarrow 2Mn^{2+} + 8H_2O$ Add $0' + 0'$: $2MnO_4^- + 16H^+ + 10I^- \rightarrow 2Mn^{2+} + 8H_2O + 5I_2$ $2mol$ $10mol$ $1mol$ $5mol$
37	С	27	Oxidising agent: Oxidises something else but is reduced (hydrogen gains e ⁻) it self $\blacksquare A$ Addition Reaction: no transfer of electrons $\blacksquare B$ no transfer of electrons $\square C$ H ₂ + 2Na \rightarrow 2Na ⁺ H ⁻ : Na is oxidised and H ₂ gains electrons (reduction) to become 2H ⁻ ions $\blacksquare D$ H ₂ is acting as reducing agent: Cu ²⁺ + 2e ⁻ \rightarrow Cu (reduction)H ₂ must be oxidised
38	С	58	 A Half-life must be the same for the same isotope of lead B Half-life must be the same for the same isotope of lead C Same lead isotope means same half life & different intensity due to concentration D Intensity of radiation will be different as there is less radioactive lead in the solution
39	A	69	β -emission: neutron splits into proton (stays in nucleus) and electron (ejected from nucleus) β -emission: atomic number increases +1 and Mass number stays same
40	В	78	図A Nuclear fisson: large atoms split into smaller atoms 図B Nuclear fusion: small atoms join together top become a bigger atom 図C Proton capture: Proton absorbed into nucleus 図D Neutron capture: neutron absorbed into the nucleus of atom.

2	2003 Higher Chemistry Marking Scheme			
Long Qu	Answer	Reasoning		
1a	2,3,3-trimethylpentane	a) identify longest carbon chain (no functional group to decide numbering system → pentane b) identify side-groups → 3x methyl groups → trimethyl c) give side-groups lowest numbering system → 2,3,3-trimethylpentane lower than 3,3,4-trimethylpentane		
1b	Cycloalkanes or aromatics/benzenes	Ring structures like cycloalkanes and benzene-based aromatic compounds help to keep molecules apart due to irregular shape preventing premature auto-ignition		
2a	Very strong	Kevlar is used in bullet-proof vests due to its strength, coming from hydrogen bonds at regular intervals between on the linear fibres of kevlar.		
2b	Amide link	The amide link on plastics is the same group of bonds as the peptide link in proteins.		
За	Graph showing points at:	Time (days)0140280420560Mass of 210Po (g)200100502512.5		
3b	$^{210}_{84}$ Po $\rightarrow ^{206}_{82}$ Pb + $^{4}_{2}$ He	$\alpha\text{-emission:}$ atomic number decreases by 2 and mass number decreases by 4		
3c	3.01×10 ²³	1 mol ²¹⁰ Po = 210g = 6.02 ×10 ²³ atoms 105g = 6.02×10 ²³ × ¹⁰⁵ / ₂₁₀ = 3.01×10 ²³ atoms		
4a	Reaction produces molten iron which can be used to fill in cracks in line	Reaction mixture is ~3000°C and iron melts at 1538°C. Molten iron will pour into mould to repair crack in railway line.		
4b	-851kJ mol ⁻¹	Equation $①$: $2AI + 1\frac{1}{2}O_2 \rightarrow AI_2O_3$ $\Delta H = -1676kJ \text{ mol}^{-1}$ Equation $②$ x-1: $Fe_2O_3 \rightarrow 2Fe + 1\frac{1}{2}O_2$ $\Delta H = \frac{+825}{kJ} \text{ mol}^{-1}$ Add $① + ③'$: $2AI + Fe_2O_3 \rightarrow AI_2O_3 + 2Fe$ $\Delta H = \frac{-851}{kJ} \text{ mol}^{-1}$		
5a	Synthesis gas	Synthesis gas is a mixture of carbon monoxide and hydrogen gas. Synthesis gas is made be steam reforming coal or natural gas		
5b	oxidation	Oxidation of alcohols Primary alcohol		
5c(i)		-NH ₂ on ether end of CO. Carbon makes 4 bonds and 2 bonds go to the 2 -NH ₂ groups \therefore Carbon must make double bond with O (C=O carbonyl group)		
5c(ii)	thermosetting	Thermosetting plastics do not soften/melt on heating Thermoplastic materials soften/melt on heating		
6a (i)	Reactant vapours are flammable	Alcohols and carboxylic acids are flammable \therefore no naked flames should be used		
6a (ii)	Condenser	The wet paper towel gives a cold surface for any vapours to condense on and prevent/reduce loss of flammable vapour from the test tube		
6b	Diagram showing:	Н Н Н Н Н - С - С - С - С - С - И Н Н Н Н Н Н Н Н Н Н Н Н Н Н		
6c	7.12g	$\begin{array}{c} 1 \text{ mol } CH_3CH_2OH = (2\times12) + (6\times1) + (1\times16) = 24+6+16 = 46g \\ CH_3CH_2OH + C_4H_9COOH \rightarrow CH_3CH_2OCOCH_2CH_2CH_2CH_3 + H_2O \\ 1 \text{ mol } 1 \text{ sog} \\ 3.6g & 130g \times 3.6/46 = 10.17g \text{ (theoretical)} \\ \% \text{ Yield} = \frac{Actual}{\text{Theoretical}} \times 100 \therefore Actual = \text{theoretical} \times \frac{\% \text{ Yield}}{100} = 10.17g \times \frac{70}{100} = 7.12g \end{array}$		

		No. of mol HCl = volume × concentration = 0.05 × 4 = 0.2mol
7a		n o. of mol = $\frac{\text{mass}}{1000}$ = $\frac{4.0}{2000}$ = 0.165mol
	Magnesium in	gfm 24.3 Ma + 2HCl → MaCla + Ha
	excess	$\frac{Mg}{1} + \frac{2}{1} + \frac{2}{1} + \frac{3}{1} + 3$
		0.165mol 0.330mol (NB only 0.2mol HCl available :: HCl is limiting reactant)
	System where as hubbles	0.1mol 0.2mol (NB 0.1 mol of Mg needed + 0.165mol available :. Mg in excess)
7b	through water before	
	going to syringe	
_	Rate of slower	Ethanoic acid is a weak acid with less H* ions present at any one time due to partial dissociation of CH-COOH as the same
/c	Volume of gas	volume and concentration of CH3COOH was used, the equilibrium moves to replace the
	produced Same	reacted H $^{\scriptscriptstyle +}$ ions \therefore same total no of H $^{\scriptscriptstyle +}$ moles are reacted giving the <u>same volume of gas</u>
80(1)	Answer to include:	Aldehydes have at least 1 hydrogen on the end of the carbonyl
UU (I)		C=O group, ketones have carbon groups on both ends of C=O.
		Oxidising agent Start Colour End Colour Acidified Dichromote Orange Green
8a (ii)	blue \rightarrow brick red	Benedict's/Fehling's Blue Brick Red (orange)
	(or blue \rightarrow orange)	Hot copper (II) oxide Black Brown Tollen's Reagent (Colourless) Silver mirror produced
	C3H4O + H2O	1. Balance atoms (other than H and O) $C_3H_6O \rightarrow C_2H_5COOH$
80(111)		2. Balance O by adding H ₂ O to other side $C_3H_6O + H_2O \rightarrow C_2H_5COOH$
OU(III)	C₂H₅COOH +2H⁺ + 2e⁻	 3. Balance A by adding A to other side 4. Balance charge by adding e⁻ to most positive side C₃H₆O + H₂O → C₂H₅COOH +2H⁺ C₃H₆O + H₂O → C₂H₅COOH +2H⁺ + 2e⁻
0		-COOH group is the carboxyl group found in carboxylic acids
80 (iv)	Propanoic acid	\therefore 3 carbon carboxylic acid is called propanoic acid
8 b(i)	addition	Addition reaction: small compound adds across a double bond.
8b(i)	addition	Addition reaction: small compound adds across a double bond. H
8b(i)	addition	Addition reaction: small compound adds across a double bond. H H-C-H H-OHH
8b(i)	addition One from:	Addition reaction: small compound adds across a double bond. H H-C-H H
8b(i) 8b(ii)	addition One from:	Addition reaction: small compound adds across a double bond. H H H H H H C H H H C C C C C H H H H H C H H H H H H H H H H H H H
8b(i) 8b(ii)	addition One from:	Addition reaction: small compound adds across a double bond. H H H H H H H H H H H H H
8b(i) 8b(ii)	addition One from:	Addition reaction: small compound adds across a double bond. H H-C-H H H H OHH H H OHH H H OHH H H C-C-C-C-H H CN H H CN H
8b(i) 8b(ii) 9a	addition One from: Total volume of liquid not	Addition reaction: small compound adds across a double bond. H - C - H + OH
8b(i) 8b(ii) 9a	addition One from: Total volume of liquid not same in each experiment	Addition reaction: small compound adds across a double bond. $\begin{array}{c c} H \\ H - C - H \\ H \\ H \\ H \\ H \\ C - C - C - O - H \\ H \\ H \\ C \\ \hline Volume of Iodide 25 cm^{3} 20 cm^{3} 15 cm^{3} 10 cm^{3} 5 cm^{3} \\ \hline Volume of Water 0 cm^{3} 5 cm^{3} 10 cm^{3} 15 cm^{3} 20 cm^{3} \\ \hline Volume of water 0 cm^{3} 5 cm^{3} 10 cm^{3} 15 cm^{3} 20 cm^{3} \\ \hline Volume of water 0 cm^{3} 5 cm^{3} 10 cm^{3} 15 cm^{3} 20 cm^{3} \\ \hline Volume of water 0 cm^{3} 5 cm^{3} 10 cm^{3} 15 cm^{3} 20 cm^{3} \\ \hline Volume of water 0 cm^{3} 5 cm^{3} 10 cm^{3} 15 cm^{3} 20 cm^{3} \\ \hline Volume of water 0 cm^{3} 5 cm^{3} 10 cm^{3} 15 cm^{3} 20 cm^{3} \\ \hline Volume of water 0 cm^{3} 5 cm^{3} 10 cm^{3} 15 cm^{3} 20 cm^{3} \\ \hline Volume of water 0 cm^{3} 5 cm^{3} 10 cm^{3} 15 cm^{3} 20 cm^{3} \\ \hline Volume of water 0 cm^{3} 5 cm^{3} 10 cm^{3} 15 cm^{3} 20 cm^{3} \\ \hline Volume of water 0 cm^{3} 5 cm^{3} 10 cm^{3} 15 cm^{3} 20 cm^{3} \\ \hline Volume of water 0 cm^{3} 5 cm^{3} 10 cm^{3} 15 cm^{3} 20 cm^{3} \\ \hline Volume of water 0 cm^{3} 5 cm^{3} 10 cm^{3} 15 cm^{3} 20 cm^{3} \\ \hline Volume of water 0 cm^{3} 5 cm^{3} 10 cm^{3} 15 cm^{3} 20 cm^{3} \\ \hline Volume of water 0 cm^{3} 5 cm^{3} 10 cm^{3} 15 cm^{3} 20 cm^{3} \\ \hline Volume of water 0 cm^{3} 5 cm^{3} 10 cm^{3} 15 cm^{3} 20 cm^{3} \\ \hline Volume of water 0 cm^{3} 5 cm^{3} 10 cm^{3} 15 cm^{3} 20 cm^{3} \\ \hline Volume of water 0 cm^{3} 5 cm^{3} 10 cm^{3} 15 cm^{3} 20 cm^{3} \\ \hline Volume of water 0 cm^{3} 5 cm^{3} 10 cm^{3} 15 cm^{3} 20 cm^{3} \\ \hline Volume of water 0 cm^{3} 5 cm^{3} 10 cm^{3} 15 cm^{3} 20 cm^{3} \\ \hline Volume of water 0 cm^{3} 5 cm^{3} 10 cm^{3} 15 cm^{3} 20 cm^{3} \\ \hline Volume of water 0 cm^{3} 5 cm^{3} 10 cm^{3} 15 cm^{3} 20 cm^{3} \\ \hline Volume of water 0 cm^{3} 5 cm^{3} 10 cm^{3} 15 cm^{3} 10 cm^{3} 15 cm^{3} 10 cm^{3} 10 cm^{3} 15 cm^{3} 10 cm^{$
8b(i) 8b(ii) 9a 9b	addition One from: Total volume of liquid not same in each experiment Answer to include:	Addition reaction: small compound adds across a double bond. H
8b(i) 8b(ii) 9a 9b	addition One from: Total volume of liquid not same in each experiment Answer to include: Rate of forward reaction	Addition reaction: small compound adds across a double bond. $\begin{array}{c c} H \\ C \\ C$
8b(i) 8b(ii) 9a 9b 10a	addition One from: Total volume of liquid not same in each experiment Answer to include: Rate of forward reaction equals rate of reverse reaction	Addition reaction: small compound adds across a double bond. $\begin{array}{c c} H \\ H - C - H \\ H \\ H \\ H \\ H \\ C - C - C - C - H \\ H \\ C \\ \hline \\ Volume of Iodide \\ 25 cm^{3} \\ \hline \\ Volume of Water \\ \hline \\ Volume of Water \\ \hline \\ \hline \\ Volume of Water \\ \hline \\ \hline \\ Volume af Water \\ \hline \\ \hline \\ \hline \\ Volume af Water \\ \hline \\ \hline \\ \hline \\ Volume af Water \\ \hline \\ \hline \\ \hline \\ \hline \\ Volume af Water \\ \hline \\ $
8b(i) 8b(ii) 9a 9b 10a	addition One from: Total volume of liquid not same in each experiment Answer to include: Rate of forward reaction equals rate of reverse reaction	Addition reaction: small compound adds across a double bond. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
8b(i) 8b(ii) 9a 9b 10a 10b	addition One from: Total volume of liquid not same in each experiment Answer to include: Rate of forward reaction equals rate of reverse reaction Iodine moves from top	Addition reaction: small compound adds across a double bond. $\begin{array}{c c} H \\ H - C - H \\ H \\ H \\ H \\ H \\ C - C - C - O - H \\ H \\ H \\ C \\ \hline \\ Volume of Iodide \\ 25 cm^3 \\ 0 cm^3 \\ 5 cm^3 \\ 10 cm^3 \\ 15 cm^3 \\ 10 cm^3 \\ 15 cm^3 \\ 20 cm^3 \\ \hline \\ \hline \\ C \\ \hline \\ Volume of Water \\ \hline \\ C \\ \hline \\ Volume of Water \\ \hline \\ C \\ \hline \\ Volume of Water \\ \hline \\ \hline \\ C \\ \hline \\ \hline \\ C \\ \hline \\ \hline \\ \hline \\ C \\ \hline \\ \hline$
8b(i) 8b(ii) 9a 9b 10a 10b	addition One from: Total volume of liquid not same in each experiment Answer to include: Rate of forward reaction equals rate of reverse reaction Iodine moves from top layer to lower layer	Addition reaction: small compound adds across a double bond. $\begin{array}{c c c c c c c c c c c c c c c c c c c $
8b(i) 8b(ii) 9a 9b 10a 10b	addition One from: Total volume of liquid not same in each experiment Answer to include: Rate of forward reaction equals rate of reverse reaction Iodine moves from top layer to lower layer	Addition reaction: small compound adds across a double bond. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
8b(i) 8b(ii) 9a 9b 10a 10b	addition One from: Total volume of liquid not same in each experiment Answer to include: Rate of forward reaction equals rate of reverse reaction Iodine moves from top layer to lower layer	Addition reaction: small compound adds across a double bond. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
8b(i) 8b(ii) 9a 9b 10a 10b	addition One from: Total volume of liquid not same in each experiment Answer to include: Rate of forward reaction equals rate of reverse reaction Iodine moves from top layer to lower layer 30g l ⁻¹	Addition reaction: small compound adds across a double bond. $\begin{array}{c c} H\\ H-C-H\\ H\\ H\\ H-C-H\\ H\\ H-C-C-C-C-C-H\\ H\\ CN\\ \hline \\ \hline $
8b(i) 8b(ii) 9a 9b 10a 10b	addition One from: Total volume of liquid not same in each experiment Answer to include: Rate of forward reaction equals rate of reverse reaction Iodine moves from top layer to lower layer 30g l ⁻¹	Addition reaction: small compound adds across a double bond. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$

11a	Curve Peaks at 75kJ mol ⁻¹ Curve Falls to -26kJ mol ⁻¹	Exothermic reaction: Products must have lower potential energy than reactants
11b(i)	Heterogeneous	Heterogeneous catalysts: catalyst and reactant(s) in different states Homogeneous catalysts: catalyst and reactant(s) in same state
11b(ii)	Curve peaks between 0 to 75kJ mol ⁻¹	Catalysts lower the activation energy required for a reaction.
11c(i)	1.2cm ³ s ⁻¹	Rate = $\frac{\Delta \text{quantity}}{\Delta \text{time}}$ = $\frac{36-24}{20-10}$ = 1.2 cm ³ s ⁻¹
11c(ii)	0.113g	Final volume of oxygen produced = $40 \text{ cm}^3 = 0.04 \text{ litres}$ no. of mol $O_2 = \frac{\text{Volume}}{\text{Molar Volume}} = \frac{0.04 \text{ litres}}{24 \text{ litres mol}^{-1}} = 0.00167 \text{ mol}$ $2H_2O_2 \rightarrow 2H_2O + O_2$ 2mol $1mol0.00333 mol$ $0.00167 molgfm H_2O_2 = (2x1) + (2x16) = 2+32 = 34gmass H_2O_2 = \text{no. of mol} \times \text{gfm} = 0.00333 \times 34 = 0.113g$
12	Answer must include:	Propane is a non-polar covalent compound. Only Van der Waals attractions between propane molecules. Propane is a gas at room temperature because propane molecules are far enough apart to be a gas due to the weak attractions between the molecules. Ethanol is a polar covalent compound with hydrogen bonding between the molecules due to the presence of the -O-H bonds. Due top the hydrogen bonding, ethanol molecules are much closer together, close enough for ethanol to be a liquid at room temperature.
13a	10 ⁻⁸	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
13b	Strong alkali Weak acid	Potassium cyanide salt is made from potassium hydroxide (strong alkali) and hydrogen cyanide (weak acid). Salts made from strong alkali and weak acid are alkaline.
13c	HCN	Acids always contain H^{\star} ions. Other ion in acid is cyanide CN ⁻ ion.
14a	carbon dioxide ammonia sodium chloride solution	Follow the in arrows into the Solvay Tower in the diagram.
14b	Equation 1: ∆H = +ve Fauation 2: ∧H = -ve	$CaCO_3 \rightarrow CaO + CO_2$: Endothermic reaction as carbonates decompose when heated $C + O_2 \rightarrow CO_2$: Combustion of carbon is always exothermic
14c	Ca(OH) ₂ + 2NH ₄ Cl ↓ CaCl ₂ + 2H ₂ O + 2NH ₃	$Ca(OH)_2 + 2NH_4CI \longrightarrow CaCl_2 + 2H_2O + 2NH_3$
14d	Sodium carbonate is soluble but magnesium carbonate is insoluble	Magnesium ions are removed by precipitation of magnesium carbonate. Soluble sodium carbonate goes into the reaction to provide the carbonate ions to precipitate out the magnesium ions
14e	Inexpensive raw materials & Recycling of unused reactants	Limestone, coke, air and seawater are all inexpensive raw materials in this reaction Other reactants are recycled to save money
15a	Hydrolysis	Hydrolysis: Proteins → amino acids Condensation: Amino acids → proteins
15b(i)	NH2 H - C - H COO ⁻ A - least furthest to Right	In alkaline pH, H ⁺ ions are removed from -COOH to form -COO ⁻ ion In acidic pH, H ⁺ ions are added to -NH2 group to form -NH3 ⁺ ion A - Only one +ve charge (-NH3 ⁺) and is heaviest
15b(ii)	B - furthest to Right C - To right between A + B	B - Two +ve charges (-NH3") and is lightest C - Only one +ve charge (-NH3") but is lighter than A

		Q=It = 0.5A × (14×60)seconds = 420C
		$2H^+ + 2e^- \rightarrow H_2$
	23.9 litres	2mol 2mol 1mol
		2×96500C 1mol
16a		193000C 1mol
		420C 1mol x ⁴²⁰ / ₁₉₃₀₀₀ = 0.00218mol
		0.00218 mol H ₂ = 0.052 litres H ₂
		Molar volume = 1 mol H ₂ = 0.052litres x $1/_{0.00218}$ = 23.9litres
	Use variable resistor	
16b	Or	
		PPA Technique Question.
	Use platinum electrodes	